
Approved forpublic release;
distribution is unlimited.

Title:

Author(s):

Submitted to.

Los Alamos
N AT I 0 N AL LAB 0 RAT0 RY

,arge Scale Data Visualization Using Parallel Data
Streaming

James Ahrens, Kristi Brislawn - Los Alamos National
,aboratory
Ken Martin, Berk Geveci, C. Charles Law - Kitware Inc.
Michael Papka .- Argonne National Laboratory

IEEE Computer Graphics and Applications.

1

Los Alamos National Laboratory, an affirmative actionlequal opportunity employer, is operated by the University of California for the US.
Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the US. Government
retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, orto allow others to do so, for US.
Government purposes, Los Alamos National Laboratoty requests that the publisher identify this article as work performed under the
auspices of the US. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher’s right to
publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (8100)

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

Large Scale Data Visualization Using Parallel Data Streaming

James Ahrens, Kristi Brislawn
Los Alamos National Laboratory Kitware Inc. Argonne National Laboratory

Ken Martin, Berk Geveci, C. Charles Law Michael Papka

Abstract- Effective large-scale data visualization remains a
significant and important challenge with analysis codes
already producing terabyte results on clusters with thou-
sands of processors. Frequently the analysis codes produce
distributed data and consume a significant portion of the
available memory per node. This paper presents an archi-
tectural approach to handling these visualization problems
based on mixed dataset topology parallel data streaming.
This enables visualizations on a parallel cluster that would
normally require more storage/memory than is available
while at the same time achieving high code reuse. Results
from a variety of hardware and visualization configurations
are discussed with data sizes ranging near to a petabyte.

Index Terms- Parallel Visualization, Large Scale Visualization,
MPI, VTK

I. INTRODUCTION

Scientists are using computer simulations to resolve models
of real world phenomenon, including models of the earth's
environment, accelerator physics dynamics, and celestial
bodies. With additional computing power and algorithmic
advances, these models have been resolved to more detailed
levels, increasing our understanding of the world around us.
In engineering and product design, simulation continues to
replace physical mockups resulting in reduced design cycle
times and costs. Key to such applications is the visualiza-
tion and analysis of simulation results. Simulations are
usually run in parallel on clusters of high-bandwidth super-
computers or PCs. The resulting datasets can be so massive
in size they require the use of parallel computing resources
of similar magnitude in order to effectively visualize them.

While visualization of large datasets is not a new problem,
it remains an important and difficult one. The traditional
improvements in hardware capabilities continue to make
larger datasets possible and more accessible. Improvements
in networking software and hardware are promoting growth
in networked computing clusters. It is expected that both
the use of large dataset visualization and the size of the
datasets will continue to grow. As both large and small
scale parallel computing resources become commonplace
for scientists, so must parallel visualization software that
effectively utilizes these resources.

Effective visualization of large datasets is a difficult prob-
lem for a number of reasons. Current analysis codes are
producing tera-element datasets distributed over thousands
of processing nodes. In some cases many time steps are

never stored to disk but must be visualized while in mem-
ory on the processing nodes. This creates a problem since
the visualization must share the already limited resources
that the simulation is using. This is compounded by the fact
that the visualization could potentially require more storage
than the simulation does. Another difficulty is that some
traditional visualization algorithms, such as streamline
generation or mesh decimation, are not well suited to
operating on distributed data or in parallel. Furthermore,
visualizations often result in processing mixed dataset
topologies even when the simulation dataset is of' a uniform
topology. An iso-surface of a rectilinear grid is a common
example of this issue.

Our solution to these problems was to develop a visualiza-
tion architecture based on mixed dataset-topology parallel
data streaming. Clearly any viable solution must support
parallel execution and visualization. Mixed topology
parallel data streaming goes beyond this to incorporate data
streaming so that the required storage resources for the
visualization can be kept significantly smaller than that of
the simulation. Additionally it supports such streaming even
when the topology of the dataset is changing from one
visualization algorithm to the next.

The resulting architecture is implemented within the Visu-
alization Toolkit (VTK) and includes specific additions to
support MPI, memory limit based streaming of both im-
plicit and explicit topologies, translation of streaming
requests between topologies, and passing data and pipeline
control between shared, distributed, and mixed memory
configurations.' The architecture directly supports both sort
first and sort last parallel rendering.

The following sections of this paper will discuss related
work, how to stream datasets in a pipeline architecture, how
to add support for mixed topologies, and how to handle
parallel processing. This paper is not intended to address
soine known issues in large dataset visualization such as
massively parallel IO, effective load balancing, or parallel
rendering although their implications are briefly discussed
and utilized.

11. RELATED WORK

While data streaming, parallel visualization, and mixed
topology visualization are all known techniques, they each
can be difficult and combining all three a significant chal-
lenge.

A number of out-of-core algorithms have been developed
that support efficient streaming of large data.'5"6 The idea
behind these approaches is to employ out-of-core or incre-
mental algorithms with a controllable memory footprint.
These methods include isosurfaces (modified marching
cubes from disk) and related computational geometry work,
streamlines, se aration and attachment lines, and vortex

Typically the algorithm
will extract pertinent features (e.g., an isosurface) and
incrementally write the output to disk. Feature extraction is
then followed by an interactive visualization of the ex-
tracted feature. What these algorithms lack is an overall
architecture. Typically they are designed to work independ-
ently from and to disk storage. Sometimes they can be
applied serially but at the cost of constantly reading and
writing the data to disk between each algorithm, a poor use
of the memory hierarchy.

lines, 10,l ,,E,, 7,18,19,20,2 I ,22,23,24

Systems such as OpenDX, AVS, and SCIRun do provide a
pipeline infrastructure and can support parallel execution.
OpenDX (formerly IBM Data Explorer) is a data-flow
based visualization system providing numerous visualiza-
tion and analysis algorithms for its users. The OpenDX
software architecture relies on a centralized executive to
instantiate, allocate memory and execute modules.'
OpenDX supports threaded data-parallelism on shared-
memory multiprocessors and distributed task parallelism.
Both mechanisms were designed to support parallelism in
the context of a centralized executive. For example, task
parallelism is achieved by a remote module that informs the
executive it is ready to execute and waits for a signal from
the executive before continuing.

SCIRun is a data flow based simulation and visualization
system that supports interactive computational steering.
SCIRun provides threaded task and data parallelism on
shared-memory multipro~essors.~~~ An extension to SCIRun
permits distributed memory task paralleli~m.~ SCIRun also
uses a centralized executive and in this way is similar to
OpenDX.

AVS is another popular data-flow visualization system that
provides a similar parallel architecture and support." A
prototype extension supported data parallelism on the CM-
5.12 All of these systems provide a tightly integrated pro-
gramming environment that supports the interactive con-
struction, execution and debugging of programs via a
graphical user interface. The existence of a single point of
control for program construction and execution (Le. the
GUI) may have lead to the creation of a related centralized
executive. Designing an efficient mechanism for controlling
a large number of processes from a single centralized
executive is difficult.

In contrast to these systems, our approach avoids the use of
a centralized executive and therefore provides a more
scalable solution. Additionally our approach supports
mixtures of task, data and pipeline parallelism on both
distributed and shared memory multiprocessors.

Other solutions, such as pV3 and Ensight, encompass a
variety of techniques and support large/parallel data but are
designed more as turn-key application^.^ pV3, is an imple-
mentation of the Visual3 visualization application in the
PVM environment. The application operates on a network
of heterogeneous computers that process data in pieces,
ultimately sending output to a collector that gathers and
displays the results. While successful, pv3 is not designed
as a toolkit but more as a custom application. Furthermore,
depending on a collector is problematic in the larger data
environment. Similarly Ensight is easy to use but lacks the
flexibility, and capabilities of our approach.

All of the approaches described above lack the ability to
stream data in memory when the dataset topologies are
changing. As many visualization techniques can change the
topology of the data this is an important consideration.
Even when using unstructured grids, which are very gen-
eral, there are situations where using a structured image is
more efficient and best represented as an image and not
another unstructured grid.

111. STREAMING DATA

The ability to stream data through a visualization pipeline
offers two main benefits. The first is that visualizations that
would not normally fit into memory or swap can be run
where otherwise they could not. The second is that visuali-
zations can be run with a smaller memory footprint result-
ing in higher cache hits, and little or no swapping to disk.
To accomplish this the visualization software must support
breaking the dataset into pieces and correctly processing
those pieces. This requires that the dataset and the algo-
rithms that operate on it are separable, mappable, and result
invariant.

Separable. The data must be separable. That is, the
data can be broken into pieces. Ideally, each piece
should be coherent in geometry, topology, and/or data
structure. The separation of the data should be simple
and efficient. In addition, the algorithms in this archi-
tecture must be able to correctly process pieces of data.
Mappable. In order to control the streaming of the data
through a pipeline, we must be able to determine what
portion of the input data is required to generate a given
portion of the output. This allows us to control the size
of the data through the pipeline, and configure the al-
gorithms.
Result Invariant. The results should be independent of
the number of pieces, and independent of the execution
mode (Le., single- or multi-threaded). This means
proper handling of boundaries and developing algo-
rithms that are multi-thread safe across pieces that may
overlap on their boundaries.

Earlier results discuss an architecture for accomplishing this
with regularly sampled volumetric data, such as images and

 volume^.^ In that architecture consumers of data, such as
rendering engines or file writers, make requests for data that
are filfilled using a three-step pipeline update mechanism.

The first step, Update Information, is used to determine the
characteristics of the dataset. This request is made by the
consumer of the data and travels upstream to the source of
the data. The resulting information contains the native data
type (such as float or short), the largest possible extent
expressed as (imin, imax, jmin, jmax, b i n , kmax), the number
of scalar values at each point, and the pipeline-modification
time. The native data type and number of scalar values at
each point are used in computing how much memory a
given piece of data would require. The largest possible
extent is typically the size of the dataset on disk. This is
useful in determining how to break the dataset into pieces
and where the hard boundaries are (versus the boundaries of
a piece). The pipeline-modification time is used to deter-
mine when cached results can be used.

Many algorithms in a visualization pipeline must modifi
the information during the Update Informution pass. For
example a 2X image magnification algorithm would pro-
duce a largest possible extent that is twice as large as its
input. A gradient algorithm would produce three compo-
nents of output for every input component.

The second step, Propagate Update Extent, is used to
propagate a request for data (the update extent) up the
pipeline (to the data source). As the request propagates
upstream, each algorithm must determine how to modify
the request. Specifically, what input extent is required for
the algorithm to generate its requested update extent. For
many algorithms this is a simple one to one mapping but for
others, such as a 2X magnification or gradient computation
using central differences, the required input extent is
different from the requested extent. This is the requirement
that the algorithms be mappable. A side effect of the
Propagate Update Extent pass is that it returns the total
memory required to generate the requested extent. This
enables streaming based on a memory limit. A simple
streaming algorithm is to propagate a large update extent
and if that requires exceeds the user specified memory
limit, then to break the update extent into smaller pieces
until it does fit. This requires that the dataset be separable.
More flexible streaming algorithms can switch between
dividing a dataset by blocks or slabs and by what axis.

The final step, Update Data, causes the visualization
pipeline to actually process the data and produce the update
extent that was requested in step two. These three steps
require a significant amount of code to implement but
surprisingly their CPU overhead is negligible. Typically
the performance speedup provided by better cache locality
more than compensates for the additional overhead. The
exception is when boundaries cells are recomputed multiple
times because they are shared between multiple pieces. This
is typical in neighborhood-based algorithms and creates a
tradeoff between piece size (memory consumption) and
recomputing shared cells (computation).

This entire three-step process is initiated by the consumer
of the data such as a writer that writes to disk or a mapper
that converts the data into OpenGL calls. In both these
cases the streaming is effective because the entire result is
never stored in memory at one time. It is either written to
disk in pieces or sent to the rendering hardware in pieces. It
is also possible to stream in the middle of a visualization
pipeline if there is an operation that requires a significant
amount of input but produces a fairly small output.

The use of streaming within VTK is simple. Consider the
following C-code example. An instance of an analytical
volumetric source is created called sourcel. It is then
connected to a contour filter that is then connected to a
mapper. A 50,000 Kilobyte memory limit is set on the
mapper which will initiate streaming if the memory con-
sumption exceeds that limit. Finally an actor, renderer, and
render window, are created and the resulting image is
rendered. The only change made to this program to support
streaming is the call to SetMemoryLimit on the mapper.

int main(int argc, char* argv[I)

/ / The pipeline
/ / source
vtkMySource* sourcel = vtkMySource::NewO;
sourcel->SetStandardDeviation(0.5 1 ;

/ / Iso-surfacing
vtkContourFilter* ctf = vtkContourFi1ter::NewO;
ctf-rSetInput(source1-SGetOutputO);
ctf-SetValue(0, 220) ;

/ / create the mapper and set a memory limit
vtkPolyDataMapper* mapper =

vtkPo1yDataMapper::NewO;
mapper-zSetInput (ctf->Getoutput 0) ;
mapper->SetMemoryLimit(50000) ;

/ / create actor, renderer etc and then render
vtkActor* actor = vtkActor::NewO;
actor->SetMapper(mapper);
vtkRenderWindow* rWin = vtkRenderWindow::NewO;
vtkRenderer* ren = vtkRenderer::NewO;
rWin->AddRenderer(ren);
ren-rAddActor (actor) ;
rWin->Render () ;

/ / cleanup and delete code

IV. MIXED TOPOLOGIES

The preceding section described how to stream data but it
didn’t consider the problems associated with streaming
unstructured data or mixtures of structured and unstructured
data. There are a number of challenges in streaming un-
structured data. First an extent must be defined for unstruc-
tured datasets. With regularly sampled volumetric data,
such as images, an extent defined as (imin, imax, jmin, jmux,
kmin, kmax) can be used but this does not work with unstruc-
tured data. With unstructured data there are a few options.
One is to use a geometric extent such as (Xmin, Xmax, ymin,

ymax, zmin, zmux) but it is an cxpensive operation to collect
the cells that fit into that extent and such an extent is
difficult to translate into the extents used for structured data
if they are not axis aligned (consider a curvilinear grid).

A more practical approach is to define an unstructured
extent as piece M out of N possible pieces. The division of
pieces is done based on cells so that piecc 2 of 10 out of a
1000 cell dataset would contain 100 cells. The approach for
streaming based on a memory limit is the same as for
structured data except that instead of splitting the data into
blocks or slabs, the number of pieces, N, is increased. This
fairly basic definition of a piece dictates that there isn’t any
control over what cells a piece will contain, only that it will
represent about 1/N ofthe total cells of the dataset.

This raises the issue of how to support unstructured algo-
rithms that require neighborhood information. The solution
is to use ghost cells, which are not normally part of the
current extent, but are included because they are required
by the alg~rithm.’~ To support this we extend the definition
of an unstructured extent to be piece M of N with G ghost
levels. This requires that any source of unstructured grid
data be capable of supplying ghost cells. There is a related
issue in that some unstructured algorithms, such as contour-
ing, operate on cells while others, such as glyphing, operate
on points. Points on the boundary between two different
extents will be shared resulting in duplicated glyphs when
processed. To solve this we indicate what points in an
extent are owned by that extent versus which ones are ghost
points. This way point-based algorithms can operate on the
appropriate points and yet still pass other points through to
the cell based algorithms that require them. In the end both
ghost cells and ghost points are required for proper process-
ing of the extents.

Consider Figure 1, which shows one piece of a sphere. The

Figure 1.

requested extent is shown in red and two ghost levels of
cells are shown in green and blue. The points are colored
based on their ownership so that all red points are owned by
the requested extent, while the green and blue points
indicate ownership of the points by other extents. Note that
some cells use a mixture of points from different extents.

Now that extents have been defined for both structured and
unstructured data, the conversion between them must be
defined. For most operations that take in structured data and
produce unstructured, a block-based division can be used to
divide the structured data into pieces until there are N
pieces as requested. If ghost cells are required the resulting
extent of the block can be expanded to include them. If
ghost point information is required it can be generated
algorithmically based on the largest possible extent and
some convention regarding what boundary points belong to
which extent.

Converting an extent from unstructured to structured could
be done in a similar manner except that it is inappropriate
for most algorithms that convert unstructured data to
structured. Consider a gaussian-splatting algorithm that
takes an unstructured grid and resamples it to a regular
volume. To produce one part of the resulting volume
requires all the cells of the unstructured grid that would
splat into that extent. With our definition of an unstructured
extent, there is no guarantee that the cells in an extent are
collocated or topologically related. So to generate one
exlent of structured output requires that all of the unstruc-
tured data be examined. While this could be done within a
loop, our current implementation requires that when trans-
lating from a requested structured extent to an unstructured
extent, the entire unstructured input is requested.

V. SWPORTING PARALLELISM

Most large-scale simulations make use of parallel process-
ing and often the results are distributed across many proc-
essing nodes. This requires that the visualization algorithms
be capable of operating in such an environment. Supporting
parallelism requires some of the same conditions as stream-
ing such as data separability and result invariance. It also
requires asynchronous execution, data transfer and collec-
tion.

Data transfer is done by creating input and output port
objects that can communicate between filters (i.e. algo-
rithms) in different processes. Asynchronous execution is
required so that one process is not unnecessarily blocked
waiting for input from another process. Consider the
pipeline in Figure 2. In this example Filter3 has two inputs.
[ts first input, Filterl, is in another process so it is requires
an input and output port for managing the cross process
communication. Before Filter3 executes it must make sure
both of its inputs have generated their data. A na’ive ap-
proach would be to simply ask each input to generate its
data in order. The problem is that while Filter3 is waiting

for Filterl to compute its data, Filter2 would be idle. To
solve this two modifications are made to the three-step
update process. The first modification is to add a non-
blocking method to the update process called Trigger
Asynchronous Update. This method is used to start the
execution of any inputs that are in other processes. Essen-
tially this method traverses upstream in the pipeline and
when it encounters a port, the port calls Update Data on its
input.

The second modification is to use the locality of inputs to
determine in what order to invoke Update Data on them.
The locality of an input is defined as 1.0 if the input is
generated within the same process, 0.0 if the input is
generated in a different process, and between 0.0 and 1 .O if
the input is partially generated in one and partially in
another (such as in a long pipeline where half of the algo-
rithms are in one process and half in another.) This locality
is computed as part of the Update Information call. So in
Figure 1, Trigger Asynchronous Update would be sent to
Filterl which would cause Filterl to start executing because
it is in a different process. Filter2 would ignore the Trigger
Asynchronous Update call since there are no ports between
it and Filter3. Then Filter3 would call Update Data on
Filter2 first, since it has the highest locality. Once Filter2
has completed executing, Update Data would be called on
Port2 which could already have the results in memory if
Filterl (which has been executing since the Trigger Asyn-
chronous Update call) has completed executing.

In addition to the above infrastructure changes, process
initialization and communication calls have been encapsu-
lated into a class so that the user does not have to directly
deal with them. Concrete subclasses have been created for
distributed-memory and shared-memory processes using
MPI and pthreads. Likewise a sort-last parallel rendering
class was written that uses inter-process communication to
collect and then composite parallel renderings into a final
image. Centralized rendering is supported by collecting the
polygonal data together using ports between processes

Filter 3 Filter 2

Process 2

connected to an append filter in the collection process.
Parallel rendering could also be implemented using polygon
collection and then parallel rendering such as WireGL or a
future parallel sort-middle approach?

Given the above parallel data streaming architecture, a data
parallel program can be created by simply writing a func-
tion that will be executed on each processor. h i d e that
function each processor will request a different extent of the
results based on its processor ID. Each processor can still
take advantage of data streaming if its local memory is not
sufficient, allowing this architecture to process extremely
large scale visualizations.

Consider modifylng the earlier C-code example to support
data parallelism and streaming. First we define a function
called process that contains the bulk of the pipeline creation
and rendering. This function will be invoked by a vtkMulti-
ProcessController that encapsulates the setup and initializa-
tion of the processes. In this example the vtkMPlController
subclass of vtkMultiProcessController is used. It is passed
into the function as an argument and it provides information
such as the process ID, and total number of processes. The
visualization pipeline is created as usual but the requested
piece (M) and total number of pieces gU) are set on the
mapper. This way the mapper of each process will only
create its piece of the total N pieces. The memory limit is
still set in case generating piece M of N requires excessive
memory. Then the request can be broken down into smaller
subpieces by the mapper. The actor and renderer are created
as usual and then an instance of the Treecomposite class is
created and the render window assigned to it. This class
encapsulates the sort-last parallel rendering technique. Then
a Render call is made to the renderer that will start the
rendering process, streaming, and finally the tree-
compositing. The main() function creates an instance of
vtkMPIController which is one of the subclasses of vtkMul-
tiProcessController, assigns a function for it to execute and
then executes it.

Void process(vtkMultiProcessController* ctrl,
void* arg)

int myId = ctrl-sGetLocalProcessId0;
int numPrcs = ctrl->GetNumberOfProcessesO;

/ / The pipeline
/ / source
vtkMySource* source1 = vtkMy9ource::NewO;
sourcel->SetStandardDeviation(0.5) ;

/ / Iso-surfacing
vtkContourFilter* ctf = vtkContourFi1ter::NewO;
ctf ->SetInput (sourcel->Getoutput 0 ;
ctf->SetValue(O, 220) ;

vtkPolyDataMapper* mapper =
vtkPo1yDataMapper::NewO;

mapper-rSetInput(ctf->Getoutput0) ;

/ / Set the total number of pieces
mapper->SetNumberOfPieces(numProcs) ;
mapper->SetPiece(myId);
mapper-~SetMemoryLimit(50000) ;

(

Figure 2

vtkActor* actor = vtkActor::NewO;
actor->SetMapper(mapper);
vtkRenderWindow* rWin = vtkRenderWindow::NewO;
vtkRenderer* ren = vtkRenderer::NewO;
rWin->AddRenderer(ren);
ren->AddActor(actor);

/ / setup the tree composite and render
vtkTreeComposite *tc = vtkTreeComposite::NeY();
tc->SetRenderWindow(rWin);
rWin->Render();

/ / cleanup and delete code

1

(
int main(int argc, char* argvil)

vtkMPIController* controller =

controller->Initialize(&argc, &argv);

controller->SetSingleMethod(procesa, 0);
controller->SingleMethodExecuteO ;
controller->Delete();
return 1;

vtkMPIControl1er::NewO;

1

VI. RESULTS

The results reported here are based on using an in memory
analytic knction as a data source. This is designed to
mimic visualizing data from a running simulation where the
simulation data is in memory. This also avoids dealing with
issues of massively parallel I/O which are beyond the scope
of this paper. The data is organized as a regular volumetric
dataset with a double precision scalar value computed at
each point. Three different visualization examples were
tested. The first two examples were tested on a cluster of 8
SGI Origin 2000s each with 128 shared-memory proces-
sors. The third example was tested on a cluster of eight PCs
each with two shared memory processors.

The first visualization example was a data parallel pipeline
that computes an isosurface from the volume, computes a
gradient magnitude field from the volume, then probes the
gradient magnitude field with the isosurface and renders the

Volume
Isosurface

I

f

Figure 3

result using a sort last parallel rendering technique.’ (see
Figures 3 and 4) This example was run with input data sizes
of 39 gigabytes, 1.1 terabytes, and 0.9 petabytes on con-
figurations between 1 and 1024 processors. The polygons
produced were rendered in software using Mesa.

The 39-gigabyte run produced 20 million polygons. Its
results are reported in terms of efficiency versus number of
processors. The eficiency is a measure of how effectively
the additional processors are being utilized. An efficiency
of 1.0 represents a linear speedup versus the number of
processors. The results are based on wall clock processing
time required and include any time required to start the
processes and allocate memory for each one. The 39 giga-
byte test is small enough that for anything beyond 64
processors the startup time dominates the actual calculation
time. Consider that linear scaling would result in a ten
second execution on 1024 processors while the time re-
quired for MPI to start 1024 processes and for each of them
to allocate their memory is on the order of 90 seconds. The
results show linear performance up to about 64 processors.
Beyond that the calculation is simply to quick to make
using more processors worthwhile. If the visualization were
to be generated at the end of each time step, so that the
process could be kept running, then using 1024 processes
would be of value.

39 Gigabyte Data Parallel

1.2
1

0.8
-8 0.6
E 0.4

0.2
0

The results of the 1.1 terabyte run are provided for 16 to
1024 processors since running on one to eight processors
would be too time consuming. This run produced 190
million polygons and with the larger problem size the
results are nearly linear across the entire range. The worst
case is the results for 1024 processors that show an e a -
ciency of 0.86 for a 418 second execution time. This is
expected due to the process initialization time.

The 0.9 petabyte run was tested on 1024 processors, re-
quired 360,000 seconds, and produced 16 billion polygons.
It is worth noting that the time required for this run was
nearly linear with respect to the time required for the 1.1
terabyte run on 1024 processors. This linearity is due to the
streaming of the data. The 0.9 petabyte run requires the
same memory footprint as the 1.1 terabyte run.

1.1 Terabyte Data Parallel 1 -

16 32 64 128 256 512 1024
Number of Processors

The second visualization example demonstrates task paral-
lelism. In task parallelism there are multiple independent
visualization pipelines. In this case there were three pipe-
lines. The first pipeline is the probed isosurface pipeline as
used in the first example. The second pipeline compules a
gradient vector field from the input data, it then reduces the
resolution and then creates oriented glyphs at each poinl.
The third pipeline extracts a cut plane from the input data
and displays it as shown in Figure 5. In a fully data parallel
configuration all three tasks would be run on each processor
similarly to the data parallel example. For contrast, in this
test the tasks were distributed across the processors with the
majority of the processors assigned to generating the probed
isosurface. So the example is task parallel with each task
using data parallelism across the processors it was sllo-
cated. The results indicate successful task parallelism with a
slightly less than linear speedup due to poor load balancing
between the tasks.

1.1 Terabyte Task Parallel

32 64 128 256 512 1024
Number of Processors

The third example considered pipeline parallelism, where
one processor performs some of the visualization while
another per€orms the rest of it. This is common in cases
where the graphics resources are available to only soinc o i
the processors. We simulated this case by running the data
parallel example on a cluster of eight Windows 2000
machines connected via gigabit Ethernet. Each machinc had
two processors and one accelerated OpenGL graphics card.
We decided to use the scrcen for hardware accelerated

rendering which limited us to eight hardware renderers even
though there were sixteen processors. In this case the
hardware rendering consumed less than one percent of the
total time.

Simple modifications to the first example allowed the use
of both processors on a machine for the computation while
only one processor was used to transmit the data to the
rendering hardware. Sort-last compositing was used to
combine the eight hardware renderings into the final buffer.
This resulted in a linear speedup from eight to sixteen
processors due to the high performance of the hardware
rendering and low cost of the shared memory data transfer.
This capability is significant since in many cases the
hardware is not homogeneous and standard data parallel
approaches will not fully utilize the available resources. In
this case the first processor could render the data while the
second processors was computing the next piece. For this
hardware configuration it allowed the use of all sixteen
processors where otherwise only eight would have been
used.

Figure 4

VII. DISCUSSION

While this paper has addressed some difficult issues, there
are others that were not addressed that are still being
researched. In many simulations with distributed data the
ghost cells can only be obtained from other processes.
Currently there is no standard mechanism for one process to
determine where to find specific ghost cells. Ideally there
would be an efficient mechanism so that an algorithm that
required ghost cells could determine what process to
request them from. Additionally some algorithms, such as
streamlines, require parallel specific versions to be written

that can pass information concerning when a streamline
exits one piece and enters another. These issues are being
actively researched in hopes of incorporating such capabili-
ties into the architecture.

This architecture has shown that parallel data streaming can
be effectively used to visualize petabytc datasets across
hundreds of processors even when the visualization would
norinally require far more memory than is available. It
provided a solution to the challenges associated with
performing such streaming on mixed topology datasets and
demonstrated data, task, and pipeline parallelism within a
software framework that is intuitive and extensible.

Figure 5

VIII. REFERENCES

1. G. Abrams, and L. Trenish. An extended data-flow
architecture for data analysis and visualization. Proceedings
of Visualization '95, pg. 263-270. IEEE Computer Society
Press 1995.

G. Hnniphreys, I. Buck, M. Eldridge, and P. Hanrahan,
Distributed Rendering for Scalable Displays, Proceedings of
Supercomputing 2000

H. El-Rewini, T. Lewis, and H. Ali. Task Scheduling in
Parallel and Distributed Systems, Prentice Hall, 1994.

R. Haimes, and D. E. Edwards. Visualization in a Parallel
Processing Environment, American Institute of Aeronautics
and Astronautics, Inc., 1997.

C.C. Law, W.J. Schroeder, K.M. Martin, and J. Tempkin.
A Multi-threaded streaming pipeline architecture for large
structured data sets. Proceedings of Visualization '99. IEEE
Computer Society Press, October 1999.

C. R. Johnson, and S.Parker. The SCIRun parallel scicn-
tific computing problem solving environment. Ninth SIAM
Conference on Parallel Processing for Scient@ Computing,
1999.

2.

3.

4.

5 .

6.

7. M. Miller, C. Hansen, and C. Johnson. Simulation steering
with SCIRun in a distributed environment. Lecture Notes in
Computer Science. Springer-Verlag, 1998.

W. J. Schroeder, K.M. Martin, and W.E. Lorenscn. The
Visualization Toolkit An Object oriented Approach to 3 0
Graphics. Prentice Hall, 1996.

S.G. Parker, D.M. Weinstein, and C.R. Johnson. The
SCIRun computational steering software system. Modern
Sopware Tools in Scientijic Computing E. Arge, A.M.
Brauset, and H.P. Langtangen, editors, pg. 1-40. Birkhauser
Press, 1997.

P. K. Agarwal, L. Arge, T. M. Murali, and others. I/O-
Eficient Algorithms for Contour-Line Extraction and Planar
Graph Blocking. In Proc. ACM-SUM Symp. On Discrete Al-
gorithms, 1998 (to appear).

C. Upson, T. Faulhaber Jr., D. Kamins and others. The
Application Visualization System: A Computational Envi-
ronment for Scientific Visualization. IEEE Computer Graph-
ics and Applications. 9(4):30-42, July 1989.

M. Krogh and C. Hanscn. Visualization on massively
parallel computers using CMIAVS. In AVS Users Confer-
ence, 1993.

S. Ramaswamy and S. Subramanian. Path Caching: A
Technique for Optimal External Searching. In Proc. ACM
amp. On Principles ofDatabase @s., pp. 25-35, 1994.

Isosurface Extraction. In Proc. Of Visualization '98. IEEE
Computer Society Press, October, 1998.

M. Cox and D. Ellsworth. Application-Controlled Demand
Paging for Out-Of-Core Visualization. In Proc. Qf Visualim-
tion '97. IEEE Computer Society Press, October, 1997.

M. Cox and D. Ellsworth. Managing Big Data for Scien-
tific Visualization. In ACM Siggraph '97 Course i f4 Explor-
ing Gigabyte Datasets in Real-Time: Algorithms, Data Man-
agement, and Time-Critical Design, August, 1997.

T. A. Funkhouser, S. Teller, C. H. Sequin, and D. Khor-
ramabadi. Database Management for Models Larger Than
Main Memory. In Interactive Walkthrough of Large Geomet-
ric Databases, Course Notes 32, Siggraph '95, August 1995.

I. Itoh and K. Koyamada. Automatic Isosurface Propaga-
tion Using an Extrema Graph and Sorted Boundary Cell
Lists. IEEE Trans. On Visualization and Computer Graphics.

8.

9.

10.

1 1.

12.

13.

14. Y. J. Chiang and C. T. Silva. Interactive Out-of-Core

15.

16.

17.

18.

1(4):319-327.
19. D. Kenwright and R Haimes. Vortex Identification -

Applications in Aerodynamics: A Case Study. In Proc. Of
Visualization '97. IEEE Computer Society Press, October,
1997.

D. Kenwright. Automatic Detection of Open and Closed
Separation and Attachment Lines. In Proc. Of Visualization
'98. IEEE Computer Society Press, October, 1998.

S. Subramanian and S. Ramaswamy. The P-Range Tree: A
New Data Structure for Range Searching in Secondary mem-
ory. In Proc. ACM-SIAM Symp. On Discrete Algorithms, pp.

S. Teller, C. Fowler, T. Funkhouser, and P. Hanrahan.
Partitioning and Ordering Large Radiosity Computations. In
Proc. Of SIGGRAPH '94. pp 443-450, July, 1994.

S. IC Ueng, K. Sikorski, and K.-L. Ma. Out-of-Core
Streamline Visualization on Large Unstructured Meshes.
IEEE Transactions on Visualization and Computer Graphics.

D. E. Vengroff and J. S. Vitter. Efficient 3-D Range
Searching in External Memory. In Proc. Annu. ACMS'mpos.
%?ory, Comp., pp 192-201, 1996.

W. Gropp, E. Lusk, and A. Skjellum. Using MPI, Portable
Parallel Programming with the Message-Passing Interface,
The MIT Press, Cambridge, Mass. 1994.

20.

21.

378-387, 1995.
22.

23.

24.

25.

